GE Energy

New High Efficiency
Simple Cycle Gas Turbine
– GE’s LMS100™
Contents

Abstract ... 1
Introduction .. 1
Gas Turbine Design .. 3
Intercooler System Design .. 4
Package Design ... 5
Reliability and Maintainability ... 6
Configurations ... 7
Performance ... 8
Simple Cycle .. 11
Combined Heat and Power ... 12
Combined Cycle ... 13
Core Test .. 13
Full Load Test .. 13
Schedule .. 14
Summary ... 14
References .. 15

Abstract
GE has introduced the first modern production gas turbine in the power generation industry to employ off-engine intercooling technology with the use of an external heat exchanger, the LMS100™. This gas turbine provides the highest simple cycle efficiency in the Industry today and comes on the heels of GE’s introduction of the highest combined cycle gas turbine system, the MS9001H. The LMS100™ system combines frame and aeroderivative gas turbine technology for gas fired power generation. This marriage provides customers with cyclic capability without maintenance impact, high simple cycle efficiency, fast starts, high availability and reliability, at low installed cost. The unique feature of this system is the use of intercooling within the compression section of the gas turbine, leveraging technology that has been used extensively in the gas and air compressor industry. Application of this technology to gas turbines has been evaluated by GE and others extensively over many years although it has never been commercialized for large power generation applications. In the past five years, GE has successfully used the SPRINT® patented spray intercooling, evaporative cooling technology between the low and high pressure compressors of the LM6000™ gas turbine, the most popular aeroderivative gas turbine in the 40 to 50MW range. GE’s development of high pressure ratio aircraft gas turbines, like the GE90®, has provided the needed technology to take intercooling to production. The LMS100™ gas turbine intercooling technology provides outputs above 100MW, reaching simple cycle thermal efficiencies in excess of 46%. This represents a 10% increase over GE’s most efficient simple cycle gas turbine available today, the LM6000™.

Introduction
GE chose the intercooled cycle to meet customers’ need for high simple cycle efficiency. The approach to developing an intercooled gas turbine is the result of years of intercooled gas turbine evaluation along with knowledge developed with operation of SPRINT® technology. Matching current technology with customer requirements results in a system approach to achieving a significant improvement in simple cycle efficiency.

The development program requirement was to use existing and proven technology from both GE Transportation (formerly GE Aircraft Engines) and GE Energy (formerly GE Power Systems), and combine them into a system that provides superior simple cycle performance at competitive installed cost. All component designs and materials, including the intercooler system, have been successfully operated in similar or more severe applications. The combination of these components and systems for a production gas turbine is new in the power generation industry.

The GE Transportation CF6-80C2/80E gas turbine provided the best platform from which to develop this new product. With over 100 million hours of operating experience in both aircraft engines and industrial applications, through the LM6000™ gas turbine, the CF6® gas turbine fits the targeted size class. The intercooling process allowed for a significant increase in mass flow compared to the current LM™ product capability. Therefore, GE Energy frame units were investigated for potential Low Pressure Compressors (LPC) due to their higher mass flow designs. The MS6001FA (6FA) gas turbine compressor operates at 460 lbm/sec (209 kg/sec) and provides the best match with the CF6-80C2 High Pressure Compressor (HPC) to meet the cycle needs.
The LMS100™ system includes a 3-spool gas turbine that uses an intercooler between the LPC and the HPC as shown in Fig. 1.

Intercooling provides significant benefits to the Brayton cycle by reducing the work of compression for the HPC, which allows for higher pressure ratios, thus increasing overall efficiency. The cycle pressure ratio is 42:1. The reduced inlet temperature for the HPC allows increased mass flow resulting in higher specific power. The lower resultant compressor discharge temperature provides colder cooling air to the turbines, which in turn allows increased firing temperatures at metal temperatures equivalent to the LM6000™ gas turbine producing increased efficiency. The LMS100™ system is a 2550°F (1380°C) firing temperature class design.

This product is particularly attractive for the peaking and mid-range dispatch applications where cyclic operation is required and efficiency becomes more important with increasing dispatch. With an aeroderivative core the LMS100™ system will operate in cyclic duty without maintenance impact. The extraordinary efficiency also provides unique capability for cogeneration applications due to the very high power-to-thermal energy ratio. Simple cycle baseload applications will benefit from the high efficiency, high availability, maintainability and low first cost.

GE, together with its program participants Avio, S.p.A., Volvo Aero Corporation and Sumitomo Corporation, are creating a product that changes the game in power generation.
Gas Turbine Design

The LMS100™ system combines the GE Energy FA compressor technology with GE Transportation CF6®/LM6000™ technology providing the best of both worlds to power generation customers. Fig. 2 shows the gas turbine architecture.

The LPC, which comprises the first 6 stages of the 6FA, pumps 460 lb/sec (209 kg/sec) of airflow (1.7 X the LM6000™ airflow). This flow rate matched the capability of the core engine in the intercooled cycle, making it an ideal choice. The LMS100™ system LPC operates at the same design speed as the 6FA, thereby reducing development requirements and risk. The compressor discharges through an exit guide vane and diffuser into an aerodynamically designed scroll case. The scroll case is designed to minimize pressure losses and has been validated through 1/6 scale model testing. Air leaving the scroll case is delivered to the intercooler through stainless steel piping.

Air exiting the intercooler is directed to the HPC inlet scroll case. Like the LPC exit scroll case, the HPC inlet collector scroll case is aerodynamically designed for low pressure loss. This scroll case is mechanically isolated from the HPC by an expansion bellows to eliminate loading on the case from thermal growth of the core engine.

The HPC discharges into the combustor at ~250°F (140°C) lower than the LM6000™ aeroderivative gas turbine. The combination of lower inlet temperature and less work per unit of mass flow results in a higher pressure ratio and lower discharge temperature, providing significant margin for existing material limits. The HPC airfoils and casing have been strengthened for this high pressure condition.

The combustor system will be available in two configurations: the Single Annular Combustor (SAC) is an aircraft style single dome system with water or steam injection for NOx control to 25 ppm; and the Dry Low Emissions-2 (DLE2) configuration, which is a multi-dome lean premixed design, operating dry to 25 ppm NOx and CO. The DLE2 is a new design based on the proven LM™ DLE combustor technology and the latest GE Transportation low emissions technology derived from the GE90® and CFM56® gas turbines. GE Global Research Center (GRC) is supporting the development program by providing technical expertise and conducting rig testing for the DLE2 combustor system.

The HPT module contains the latest airfoil, rotor, cooling design and materials from the CF6-80C2 and -80E aircraft engines. This design provides increased cooling flow to the critical areas of the HPT, which, in conjunction with the lower cooling flow temperatures, provides increased firing temperature capability.

The IPT drives the LPC through a mid-shaft and flexible coupling. The mid-shaft is the same design as the CF6-80C2/LM6000™. The flexible coupling is the same design used on the LM2500™ marine gas turbine on the U.S. Navy DDG-51 Destroyers. The IPT rotor and stator components are being designed, manufactured and assembled by Avio, S.p.A. as a program participant in the development of the LMS100™ system. Volvo Aero Corporation as a program participant manufactures the Intermediate Turbine Mid-Frame (TMF) and also assembles the liners, bearings and seals.

The IPT rotor/stator assembly and mid-shaft are assembled to the core engine to create the ‘Supercore.’ This Supercore assembly can be replaced in the field within a 24-hour period.
New High Efficiency Simple Cycle Gas Turbine – GE’s LMS100™

Lease pool Supercores will be available allowing continued operation during overhaul periods or unscheduled events.

The Power Turbine (PT) is a 5-stage design based on the LM6000™ and CF6-80C2 designs. Avio, S.p.A. is designing the PT for GE Transportation and manufacturing many of the components. Volvo Aero Corporation is designing and manufacturing the PT case. The Turbine Rear Frame (TRF) that supports the PT rotor/stator assembly and the Power Turbine Shaft Assembly (PTSA) is based on GE Energy’s frame technology. The PTSA consists of a rotor and hydrodynamic tilt-pad bearings, including a thrust bearing. This system was designed by GE Energy based on extensive frame gas turbine experience. The PT rotor/stator assembly is connected to the PTSA forming a free PT (aerodynamically coupled to the Supercore), which is connected to the generator via a flexible coupling.

The diffuser and exhaust collector combination was a collaborative design effort with the aero design provided by GE Transportation and the mechanical design provided by GE Energy. GE Transportation’s experience with marine modules and GE Energy’s experience with E and F technology diffuser/collector designs were incorporated.

Intercooler System Design

The intercooler system consists of a heat exchanger, piping, bellows expansion joints, moisture separator and variable bleed valve (VBV) system. All process air wetted components are made of stainless steel. The LMS100™ system will be offered with two types of intercooling systems, a wet system that uses an evaporative cooling tower and a dry system (no water required).

The wet system uses an air-to-water heat exchanger of the tube and shell design, as shown in Fig. 3.

The intercooler lies horizontal on supports at grade level, making maintenance very easy. Applications that have rivers, lakes or the ocean nearby can take advantage of the available cooling water. This design provides plant layout flexibility. In multi-unit sites a series of evaporative cooling towers can be constructed together, away from the GT, if desirable, to optimize the plant design.

An optional configuration using closed loop secondary cooling to a finned tube heat exchanger (replacing the evaporative cooling towers) will also be available (See Fig. 4). This design uses the same primary heat exchanger (tube and shell), piping, bellows expansion joints and VBV system, providing commonality across product.
configurations. The secondary cooling system can be water or glycol. This system is beneficial in cold and temperate climates or where water is scarce or expensive.

An alternate dry intercooler system is being developed for future applications, and uses an air-to-air heat exchanger constructed with panels of finned tubes connected to a header manifold. This design is the same as that used with typical air-cooled systems in the industry. The main difference is mounting these panels in an A-frame configuration. This configuration is typically used with steam condensers and provides space advantages together with improved condensate drainage. The material selection, design and construction of this system are in general conformance with American Petroleum Institute (API) Standard 661 and are proven through millions of hours of operation in similar conditions.

The air-to-air system has advantages in cold weather operation since it does not require water and therefore winterization. Maintenance requirements are very low since this system has very few moving parts. In fact, below 40°F (4°C) the fans are not required, thereby eliminating the parasitic loss. In high ambient climates the performance of the air-to-air system can be enhanced with an evaporative cooling system integrated with the heat exchanger. This provides equivalent performance to the air-to-water system. Water usage will be low and intermittent since it would only be used during the peak temperature periods, resulting in a very low yearly consumption.

Package Design

The gas turbine is assembled inside a structural enclosure, which provides protection from the environment while also reducing noise (see Fig. 5). Many customer-sensing sessions were held to determine the package design requirements, which resulted in a design that has easy access for maintenance, quick replacement of the Supercore, high reliability and low installation time. Package design lessons learned from the highly successful LM6000™ gas turbine and GE’s experiences with the 9H installation at Baglan Bay have been incorporated into the LMS100™ system package design. The complete GT driver package can be shipped by truck. This design significantly reduces installation time and increases reliability.
The auxiliary systems are mounted on a single skid in front of the GT driver package. This skid is pre-assembled and factory tested prior to shipment. The auxiliary skid connects with the base plate through short, flexible connectors. This design improves reliability and reduces interconnects and site installation cost (see Fig. 6).

Reliability and Maintainability

The LMS100™ system is designed for high reliability and leverages LM™ and GE Energy frame technology and experience, along with GE Transportation technology. The use of Six Sigma processes and methods, and Failure Modes and Effects Analysis (FMEA) for all systems identified areas requiring redundancy or technology improvements. The LMS100™ system will consist of a single package and control system design from GE Energy, greatly enhancing reliability through commonality and simplicity.

The control system employs remote I/O (Input/Output) with the use of fiber optics for signal transmission between the package and control system. These connections are typically installed during site construction and have in the past been the source of many shutdowns due to Electro Magnetic Interference (EMI). The LMS100™ design reduces the number of these signal interconnects by 90% and eliminates EMI concerns with the use of fiber optic cables. In addition, the auxiliary skid design and location reduce the mechanical interconnects by 25%, further improving reliability. The use of an integrated system approach based on the latest reliability technology of the GE Transportation flight engine and GE Energy Frame GT will drive the Mean Time Between Forced Outages (MTBFO) of the LMS100™ system up to the best frame gas turbine rate.

The LMS100™ system has the same maintenance philosophy as aeroderivative gas turbines – modular design for field replacement. Design maintenance intervals are the same as the LM6000™ – 25,000 hours hot section repair and 50,000 hours overhaul intervals.
The LPC requires very little maintenance with only periodic borescope inspections at the same time as the core engine. No other significant maintenance is required.

The Supercore requires combustor, HPT airfoils and IPT airfoils inspection and on-condition repair or replacement at 25,000 hours. This can be accomplished on-site within a 4-day period. The package is designed for 24-hour removal and replacement of the Supercore. Rotatable modules for the combustor, HPT and IPT will be used to replace existing hardware. The Supercore and PT rotor/stator module will be returned to the Depot for the 50,000-hour overhaul. During this period a leased Supercore and PT rotor/stator module will be available to continue revenue operation. The LMS100™ core is compatible with existing LM6000™ Depot capabilities.

The PT rotor/stator assembly only requires on-condition maintenance action at 50,000 hours. This module can be removed after the Supercore is removed and replaced with a new module or a leased module during this period.

The PT shaft assembly, like the LPC, needs periodic inspection only.

Configurations

The LMS100™ system is available as a Gas Turbine Generator set (GTG), which includes the complete intercooler system. An LMS100™ Simple Cycle power plant will also be offered. GTGs will be offered with several choices of combustor configurations as shown in Table 1.

The GTG is available for 50 and 60 Hz applications and does not require the use of a gearbox.

Air-to-air or air-to-water intercooler systems are available with any of the configurations to best match the site conditions.

<table>
<thead>
<tr>
<th>Product Offering</th>
<th>Fuel Type</th>
<th>Diluent</th>
<th>NOx Level</th>
<th>Power Augmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMS100PA-SAC</td>
<td>Gas or Dual</td>
<td>Water</td>
<td>25</td>
<td>None</td>
</tr>
<tr>
<td>(50 or 60 Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMS100PA-SAC</td>
<td>Gas</td>
<td>Steam</td>
<td>25</td>
<td>None</td>
</tr>
<tr>
<td>(50 or 60 Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMS100PA-SAC STIG</td>
<td>Gas</td>
<td>Steam</td>
<td>25</td>
<td>Steam</td>
</tr>
<tr>
<td>(50 or 60 Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMS100PB-DLE2</td>
<td>Gas</td>
<td>None</td>
<td>25</td>
<td>None</td>
</tr>
<tr>
<td>(50 or 60 Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. LMS100™ System Product Configurations

Optional kits will be made available for cold weather applications and power augmentation for hot ambient when using the air-to-air intercooler system.

All 50 Hz units will meet the requirements of applicable European directives (e.g. ATEX, PEDS, etc.).

The generator is available in an air-cooled or TWAC configuration and is dual rated (50 and 60 Hz). Sumitomo Corporation is a program participant in development of the LMS100™ system and will be supplying a portion of the production generators. Brush or others will supply generators not supplied by Sumitomo.

The GTG will be rated for 85-dBA average at 3 feet (1 meter). An option for 80-dBA average at 3 feet (1 meter) will be available.
Performance

The LMS100™ system cycle incorporates an intercooled compressor system. LPC discharge air is cooled prior to entering the HPC. This raises the specific work of the cycle from 150(kW/pps) to 210+(kW/pps). The LMS100™ system represents a significant shift in current power generation gas turbine technology (see Fig. 7 – data from Ref. 1).

![Fig. 7. LMS100™ System Specific Work vs. Other Technology](image)

As the specific work increases for a given power the gas turbine can produce this power in a smaller turbine. This increase in technical capability leads to reduced cost. The LMS100™ system changes the game by shifting the technology curve to provide higher efficiency and power in a smaller gas turbine for its class (i.e. relative firing temperature level).

The cycle design was based on matching the existing GE Transportation CF6-80C2 compressor with available GE Energy compressor designs. The firing temperature was increased to the point allowed by the cooled high pressure air to maintain the same maximum metal temperatures as the LM6000™ gas turbine. The result is a design compression ratio of 42:1 and a firing temperature class of 2550°F (1380°C) that produces greater than 46% simple cycle gas turbine shaft efficiency. This represents a 10% increase over GE’s highest efficiency gas turbine available in the Industry today – the LM6000™ gas turbine @42% (see Fig. 8 – data from Ref. 1).

![Fig. 8. LMS100™ System Competitive Positions](image)

Intercooling provides unique attributes to the cycle. The ability to control the HPC inlet temperature to a desired temperature regardless of ambient temperatures provides operational flexibility and improved performance. The LMS100™ system with the SAC combustion system maintains a high power level up to an ambient temperature of ~80°F (27°C) (see Fig. 9). The lapse rate (rate of power reduction vs. ambient temperature) from 59°F (15°C) to 90°F (32°C) is only 2%, which is significantly less than a typical aeroderivative (~22%) or frame gas turbine (~12%).

The LMS100™ system has been designed for 50 and 60 Hz operations without the need for a speed reduction gearbox. This is achieved by providing a different PT Stage 1 nozzle for each speed that is mounted between the Supercore and PT. The PT design point is optimized to provide the best performance at both 3000 and 3600 rpm.
operating speeds. Fig. 9 shows that there is a very
small difference in performance between the two
operating speeds.

![Fig. 9. LMS100™ System SAC Performance](image)

Most countries today have increased their focus on environmental impact of new power plants and desire low emissions. Even with the high firing temperatures and pressures, the LMS100™ system is capable of 25ppm NOx at 15% O₂ dry.

Table 1 shows the emission levels for each configuration. The 25 ppm NOx emissions from an LMS100™ system represent a 30% reduction in pounds of NOx/kWh relative to LM6000™ levels. The high cycle efficiency results in low exhaust temperatures and the ability to use lower temperature SCRs (Selective Catalytic Reduction).

Another unique characteristic of the LMS100™ system is the ability to achieve high part-power efficiency. Fig. 10 shows the part-power efficiency versus load. It should be noted that at 50% load the LMS100™ system heat rate (~40% efficiency) is better than most gas turbines at baseload. Also, the 59°F (15°C) and 90°F (32°C) curves are identical.

The LMS100™ system will be available in a STIG (steam injection for power augmentation) configuration providing significant efficiency improvements and power augmentation. Figs. 11 and 12 show the power output at the generator terminals and heat rate, respectively.

![Fig. 10. LMS100™ System Part-Power Efficiency](image)

![Fig. 11. LMS100™ System STIG Electric Power vs T_ambient](image)
match heating or cooling needs for winter or summer, respectively. During the peak season, when power is needed and electricity prices are high, the steam can be injected into the gas turbine to efficiently produce additional power. During other periods the steam can be used for process. This characteristic provides flexibility to the customer and economic operation under varying conditions.

A unique characteristic of the LMS100™ system is that at >2X the power of the LM6000™ gas turbine it provides approximately the same steam flow. This steam-to-process can be varied to
be achieved with a much smaller steam plant than other gas turbines.

Table 2 shows a summary of the LMS100™ system configurations and their performance. The product flexibility provides the customer with multiple configurations to match their needs while at the same time delivering outstanding performance.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Power (Mwe)</th>
<th>Heat Rate (BTU/KWh)</th>
<th>Power (Mwe)</th>
<th>Heat Rate (KJ/KWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLE</td>
<td>98.7</td>
<td>7509</td>
<td>99.0</td>
<td>7921</td>
</tr>
<tr>
<td>SAC w/Water</td>
<td>102.6</td>
<td>7813</td>
<td>102.5</td>
<td>8247</td>
</tr>
<tr>
<td>SAC w/Steam</td>
<td>104.5</td>
<td>7167</td>
<td>102.2</td>
<td>7603</td>
</tr>
<tr>
<td>STIG</td>
<td>112.2</td>
<td>6845</td>
<td>110.8</td>
<td>7263</td>
</tr>
</tbody>
</table>

Table 2. LMS100™ System Generator Terminal Performance
(ISO 59ºF/15ºC, 60% RH, zero losses, sea level)

Simple Cycle

The LMS100™ system was primarily designed for simple cycle mid-range dispatch. However, due to its high specific work, it has low installed cost, and with no cyclic impact on maintenance cost, it is also competitive in peaking applications. In the 100 to 160MW peaking power range, the LMS100™ system provides the lowest cost-of-electricity (COE). Fig. 16 shows the range of dispatch and power demand over which the LMS100™ system serves as an economical product choice. This evaluation was based on COE analysis at $5.00/MMBTU (HHV).

The LMS100™ will be available in a DLE configuration. This configuration with a dry intercooler system will provide an environmental simple cycle power plant combining high efficiency, low mass emissions rate and without the usage of water.

In simple cycle applications all frame and aeroderivative gas turbines require tempering fans in the exhaust to bring the exhaust temperature within the SCR material capability. The exhaust temperature (shown in Fig. 14) of the LMS100™ system is low enough to eliminate the requirement for tempering fans and allows use of lower cost SCRs.

Many peaking units are operated in hot ambient conditions to help meet the power demand when air conditioning use is at its maximum. High ambient temperatures usually mean lower power for gas turbines. Customers tend to evaluate gas turbines at 90°F (32°C) for these applications. Typically, inlet chilling is employed on aeroderivatives or evaporative cooling for heavy duty and aeroderivative engines to reduce the inlet temperature and increase power. This adds fixed cost to the power plant along with the variable cost adder for water usage. The power versus temperature profile for the LMS100™ system in
Fig. 9 shows power to be increasing to 80°F (27°C) and shows a lower lapse rate beyond that point versus other gas turbines. This eliminates the need for inlet chilling thereby reducing the product cost and parasitic losses. Evaporative cooling can be used above this point for additional power gain.

Simple cycle gas turbines, especially aeroderivatives, are typically used to support the grid by providing quick start (10 minutes to full power) and load following capability. The LMS100™ system is the only gas turbine in its size class with both of these capabilities. High part-power efficiency, as shown in Fig. 10, enhances load following by improving LMS100™ system operating economics.

Fig. 17. LMS100™ System Gas Turbine Grid Frequency Variations

Many countries require off-frequency operation without significant power loss in order to support the grid system. The United Kingdom grid code permits no reduction in power for 1% reduction in grid frequency (49.5 Hz) and 5% reduction in power for an additional 5% reduction in grid frequency (47 Hz). Fig. 17 shows the impact of grid frequency variation on 3 different gas turbines: a single shaft, a 2-shaft and the LMS100™ system. Typically, a single and 2-shaft engine will need to derate power in order to meet the UK code requirements.

The LMS100™ system can operate with very little power variation for up to 5% grid frequency variation. This product is uniquely capable of supporting the grid in times of high demand and load fluctuations.

Combined Heat and Power

Combined Heat and Power (CHP) applications commonly use gas turbines. The exhaust energy is used to make steam for manufacturing processes and absorption chilling for air conditioning, among others. The LMS100™ system provides a unique characteristic for CHP applications. As shown in Fig. 13, the higher power-to-steam ratio can meet the demands served by 40-50MW aeroderivative and frame gas turbines and provide more than twice the power. From the opposite view, at 100MW the LMS100™ system can provide a lower amount of steam without suffering the significant efficiency reduction seen with similar size gas turbines at this steam flow. This characteristic creates opportunities for economical operation in conjunction with lower steam demand.

Fig. 18. LMS100™ System Intercooler Heat Rejections
Fig. 18 shows the intercooler heat dissipation, which ranges from 20-30MW of thermal energy. With an air-to-water intercooler system, the energy can be captured for low-grade steam or other applications, significantly raising the plant efficiency level. Using exhaust and intercooler energy, an LMS100™ plant will have >85% thermal efficiency.

Combined Cycle

Even though the LMS100™ system was aimed at the mid-range dispatch segment, it is also attractive in the combined cycle segment. Frame gas turbines tend to have high combined cycle efficiency due to their high exhaust temperatures. In the 80-160MW class, combined cycle efficiencies range from 51–54%. The LMS100™ system produces 120MW at 53.8% efficiency in combined cycle.

A combined cycle plant based on a frame type gas turbine produces 60-70% of the total plant power from the gas turbine and 30-40% from the steam turbine. In combined cycle the LMS100™ system produces 85-90% of the total plant power from the gas turbine and 10-15% from the steam turbine. This results in a lower installed cost for the steam plant.

The lower exhaust temperature of the LMS100™ system also allows significantly more power from exhaust system duct firing for peaking applications. Typical frame gas turbines exhaust at 1000°F-1150°F (538°C-621°C) which leaves 300°F-350°F (149°C-177°C) for duct firing. With the LMS100™ exhaust temperatures at <825°F (440°C) and duct-firing capability to 1450°F (788°C) (material limit) an additional 30MW can be produced.

Core Test

The LMS100™ core engine will test in GE Transportation’s high altitude test cell in June 2004. This facility provides the required mass flow at >35 psi (>2 bar) approaching the core inlet conditions. The compressor and turbine rotor and airfoils will be fully instrumented. The core engine test will use a SAC dual fuel combustor configuration with water injection. Testing will be conducted on both gas and liquid fuel. This test will validate HPC and HPT aeromechanics, combustor characteristics, starting and part load characteristics, rotor mechanical design and aero thermal conditions, along with preliminary performance. More than 1,500 sensors will be measured during this test.

Full Load Test

The full load test will consist of validating performance (net electrical) of the gas turbine intercooler system with the production engine configuration and air-cooled generator. All mechanical systems and component designs will be validated together with the control system. The gas turbine will be operated in both steady state and transient conditions.

The full load test will be conducted at GE Energy’s aeroderivative facility in Jacintoport, Texas, in the first half of 2005. The test will include a full simple cycle power plant operated to design point conditions. Power will be dissipated to air-cooled load (resistor) banks. The gas turbine will use a SAC dual fuel combustion system with water injection.

The LPC, mid-shaft, IPT and PT rotors and airfoils will be fully instrumented. The intercooler system, package and sub-systems will also be instrumented to validate design calculations. In total, over 3,000 sensors will be recorded.
After testing is complete, the Supercore and PT rotor/stator assemblies will be replaced with production (uninstrumented) hardware. The complete system will be shipped to the demonstration customer site for endurance testing. This site will be the “Fleet Leader,” providing early evaluation of product reliability.

Schedule

The first production GTG will be available for shipment from GE Energy’s aeroderivative facility in Jacintoport, Texas, in the second half of 2005. Configurations available at this time will be SAC gas fuel, with water or steam injection, or dual fuel with water injection. Both configurations will be available for 50 and 60 Hz applications. STIG will be available in the first half of 2006. The DLE2 combustion system development is scheduled to be complete in early 2006. Therefore, a LMS100™ system configured with DLE2 combustor in 50 or 60 Hz will be available in the second half of 2006.

Summary

The LMS100™ system provides significant benefits to power generation operators as shown in Table 3. The LMS100™ system represents a significant change in power generation technology. The marriage of frame technology and aircraft engine technology has produced unparalleled simple cycle efficiency and power generation flexibility. GE is the only company with the technology base and product experience to bring this innovative product to the power generation industry.

- High simple cycle efficiency over a wide load range
- Low lapse rate for sustained hot day power
- Low specific emissions (mass/kWh)
- 50 or 60 Hz capability without a gearbox
- Fuel flexibility – multiple combustor configurations
- Flexible power augmentation
- Designed for cyclic operation:
 - No maintenance cost impact
- 10-minute start to full power
 - Improves average efficiency in cyclic applications
 - Potential for spinning reserves credit
 - Low start-up and shutdown emissions
- Load following capability
- Synchronous condenser operation
- High availability:
 - Enabled by modular design
 - Rotable modules
 - Supercore and PT lease pool
- Low maintenance cost
- Designed for high reliability
- Flexible plant layout
 - Left- or right-hand exhaust and/or intercooler installation
- Operates economically across a wide range of dispatched hours

Table 3. LMS100™ Customer Benefits
References:

1) Gas Turbine World (GTW); “2003 GTW Handbook,” Volume 23

LMS100 is a trademark of GE Energy.

GE90, CF6 and LM2500 are registered trademarks of General Electric Company.

LM6000 is a trademark of General Electric Company.

MS6001 is a trademark of GE Energy.

CFM56 is a registered trademark of CFM International, a joint company of Snecma Moteurs, France, and General Electric Company.

SPRINT is a registered trademark of General Electric Company.